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Abstract

Flight tests of a propulsion-controlled aircraft (PCA)

system on an F-15 airplane have been conducted at the
NASA Dryden Flight Research Center. The airplane was

flown with all flight control surfaces locked both in the

manual throttles-only mode and in an augmented system

mode. In the latter mode, pilot thumbwheel commands and

aircraft feedback parameters were used to position the

throttles. Flight evaluation results showed that the PCA

system can be used to land an airplane that has suffered a

major flight control system failure safely. The PCA system

was used to recover the F-15 airplane from a severe upset
condition, descend, and land. Pilots from NASA, U.S. Air

Force, U.S. Navy, and McDonnell Douglas Aerospace

evaluated the PCA system and were favorably impressed

with its capability. Manual throttles-only approaches were
unsuccessful. This paper describes the PCA system opera-

tion and testing. It also presents flight test results and pilot
comments.

Nomenclature

AGL

CAS

DEEC

HIDEC

HUD

KIAS

above ground level

control augmentation system

digital electronic engine control

Highly Integrated Digital Electronic Control

heads-up display

knots indicated airspeed
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MSL mean sea level

NCI navigation control indicator

PCA propulsion-controlled aircraft

V airspeed, kts

ct angle of attack, deg

Introduction

After a major flight control system failure, the crew of a

multiengine aircraft may use throttle manipulation for

emergency flightpath control. Differential throttle control

generates sideslip, which through dihedral effect, results in

roll. Symmetric throttle inputs may be used to control

pitch. Pilots of at least four wide-body aircraft have had to
use throttles for emergency flight control} These aircraft

include the DC-10 (McDonnell Douglas Aerospace

(MDA), Long Beach, California), B-747 (Boeing Com-

pany, Seattle, Washington), and L-1011 and C-5 (Lock-

heed Corporation, Burbank, Califomia).

To investigate the use of engine thrust for emergency

flight control, the National Aeronautics and Space Admin-
istration, Dryden Flight Research Center (NASA Dryden),

Edwards, California, has been conducting flight, ground

simulator, and analytical studies. One objective is to deter-

mine the degree of control power available for various

classes of airplanes. This objective has shown a surprising

amount of control capability for most muitiengine air-

planes. A second objective is to provide awareness of
throttles-only control capability and suggested manual

throttles-only control techniques for pilots. Results of sim-

ulation and flight studies of several airplanes, including

the B-720, B-727, B-747, Lear 24 (Gates Learjet, Wichita,

Kansas), and F-15 (McDonnell Douglas Aerospace, St.

Louis, Missouri), and recommended procedures for man-

ual throttles-only flight have been reported? Another



objective is to investigate control modes that couldbe
developed for future fighter and transport airplanes. An
augmented control system that uses pilot flightpath and
bank angle inputs and sensor feedbacks to provide throttle
commands for emergency landings was developed and
evaluated on a transport airplane simulation 3 and on an
F- 15 simulation. 4

In 1993, a flight test program on the NASA I:-15
airplane investigated the performance of the PCA system,
and landings using PCA control were completed, s,6 The
PCA recoveries from upset conditions, including 90°
banks at 20 ° dives, were flown. In addition, the PCA enve-

lope was expanded well beyond its original design in
speed and bank angle. During the flight test program, eight
pilots flew the F-15 airplane with the PCA system. Manual
throttles-only approaches were also attempted and com-
pared with PCA approaches.

This paper summarizes the flight tests of the
PCA-augmented system for the F-15 airplane. Test tech-
niques, results of PCA landings, PCA recoveries from
upsets, manual throNes-only approaches, and pilot com-
ments are presented. Principles of throttles-only control
were previously reported and will not be further discussed
in this paper. 5

Description of F-15 Airplane and

Instrumentation

Figure l(a) shows the F-15 airplane under PCA control,
and figure l(b) shows a three-view drawing of this air-
plane. This high-performance fighter airplane has a maxi-
mum capability of Mach 2.5 and a high wing with 45° of
leading-edge sweep and twin vertical tails. The airplane is
powered by two F100 afterbuming turbofan engines (Pratt
& Whitney (P&W), West Palm Beach, Florida) mounted
close to the centerline (4.25 ft apart) in the aft fuselage.
As is typical of fighter airplanes, the propulsion system is
highly integrated into the fuselage. This airplane has been
used in the Highly Integrated Digital Electronic Control
(HIDEC) program for numerous integrated flight propul-
sion controls system research experiments in the last 10 yr.

The developmental F100 engine model derivative
0EMD) engines are installed in the NASA F-15 airplane.
These engines (PWl128) include a redesigned fan, which
was later incorporated into the F100-PW-229 engine, and
other improvements. The F100 EMD engines are con-
trolled by a digital electronic engine control (DEEC). Pro-
totype control system software was incorporated into
these EMD engines. As an unfortunate side effect, this
software produced slower than production engine
response characteristics at low-power settings. For the
PCA tests, afterburning was not used; throttle settings
were limited to intermediate and below.

External compression horizontal ramp inlets with vari-

able geometry are mounted on the sides of the forward
fuselage. A variable-capture-area capability exists in
which the inlet cowl rotates about a point near the lower

cowl lip. At subsonic speeds, the inlet cowl angle is nor-
really positioned by a control system as a function of angle
of attack. If the inlet control system fails, if hydraulic pres-
sure is lost, or if the pilot selects it, the inlets go to the full
up "emergency" position.

The NASA F-15 flight control system features the stan-
dard mechanical flight control system and a digital control
augmentation system (CAS). For throttles-only control
research, the CAS can be turned off. In addition, the

mechanical pitch and roll ratio changer system can be
operated in an emergency mode which eliminates any

flight control system response except that caused by pilot
inputs. For all data shown in this paper, "CAS-ofF' refers
to this CAS-off pitch and roll ratios emergency
configuration.

Augmented Control Mode

Figure 2(a) shows the features of the PCA system on the
F-15 airplane. Figure 2(b) shows the location of the PCA
installation in the F-15 cockpit. Except for a thumbwheel
controller panel, the PCA system used equipment which
had been previously installed. This panel consists of ana-
log devices with continuous output used by the pilot to
command flightpath and bank angle. The various avionics
and PCA units communicate with each other through digi-
tal data buses. The logic for the PCA control laws resides
in the general-purpose research computer and is written in
FORTRAN. Digital inputs are received from the digital
flight control system, inertial navigation set, airdata com-
puter, digital engine controls, and pilot's flightpath and
bank angle thumbwheels. The PCA system sends throttle
commands to the internal DEEC electronic throttle com-

mand logic without driving the throttle levers in the
cockpit. These commands are limited to the idle-to-
intermediate-power range. No commands are sent to the
inlets during PCA operation. The pilot may also send

inputs to the PCA logic through the navigation control
indicator (NCI) keyboard on the right console.

Figure 3 shows the PCA control laws. These laws were
developed using classical means using root locus and
Bode analysis. In the pitch axis, pilot thumbwheel com-
mand for flightpath angle is compared to the sensed flight-
path angle, with flightpath angle rate as the primary
feedbacks. Velocity feedback was also used in some cases

to assist in phugoid damping. Symmetric (equal) thrust
commands are sent to both engines to obtain the com-
manded flightpath. The thumbwheel flightpath command
is displayed to the pilot on the heads-up display (HUD)
using a small box symbol (fig. 2(b)). This display provides



flightinformation,such as airspeed and altitude. A veloc-
ity vector symbol is available for determining the precise
flightpath relative to the ground. Flightpath command lim-
its are 15° to -10%

In the roll axis, the pilot bank angle command is com-

pared to stability axis yaw rate and to bank angle. Differ-
ential thrust commands are issued to both engines to
obtain the commanded bank angle. Bank angle command
limits are :1:30°. Numerous automatic features were

installed to disengage the PCA system in case of malfunc-
tion, exceedance of predefined limits, or pilot movement
of the stick or throttles.

The pitch and roll axis control laws were developed by
MDA and NASA Dryden using linear models, nonlinear
batch simulations, and nonlinear piloted simulations.
Extensive flexibility was built into the PCA software. This
flexibility permits the pilots to change almost all gain
schedules, table values, filters, logic options, and control
modes in flight. Such flexibility proved invaluable during
the flight tests.

The F-15 airplane was instrumented to measure the
parameters required for the throttles-only flights. Such
flight test engine and airplane parameters as airdata, atti-
tudes, rates, positions, and temperatures were measured. A
radar altimeter was added. The HUD video and a continu-

ously recording pilot microphone were invaluable for
evaluating the PCA system and pilot comments. All of this
information was recorded onboard and telemetered to the

ground for recording and real-time display in the control
room.

F-15 Simulations

Two F-15 simulations were used in this study: one at
NASA Dryden and the other at MDA. The NASA Dryden
F-15 simulation was a fixed-base, full-envelope, six-
degree-of-freedom aircraft simulation. This model con-
tained nonlinear aerodynamics and a nonlinear flight con-
trol system as well as an engine model which was
developed to represent the F100 EMD engines. The initial
control laws and a model of inlet effects because of air-

flow variation were developed and incorporated.4 The

PCA flight conlrol logic was incorporated for control law
evaluation and development. The NASA Dryden simula-
tor was also used for pilot training, particularly for the
guest pilots.

The fixed-base simulation at MDA featured an F-15

cockpit and a very-high-fidelity visual capability, incorpo-
rating scenery projected onto a 40-ft dome. The aerody-
namic, control system, and propulsion system models
were similar to those at NASA Dryden. For the PCA sim-
ulation tests, the PCA control logic was incorporated for
control law evaluation and development. For the verifica-
tion and validation tests, the flight software was installed

in flight control computers. An F-15 HUD, NCI panel, and
flight thumbwheels were used for the piloted hard-
ware-in-the-loop tests.

Test Techniques

Test techniques were developed to assess the throt-
ties-only control capability of the F-15 airplane and simu-
lation. To avoid the presence of flight control system
inputs, the CAS was turned off, and the emergency mode
was selected for the mechanical system. In this mode, the
flight control surfaces would not move as long as the pilot
did not move the stick or rudder pedals. The inlet was
moved to its emergency position which would occur if
hydraulic pressure were lost. For low-speed approach and
landing tests, the landing gear and electrically powered
flaps were lowered. The pilot trimmed the airplane to the
desired airspeed and then released the flight controls.

In-flight, open-loop, throttles-only tests, including small
and large-throttle steps, were flown. Control performance
was observed and compared to the simulation. Later, the
augmented PCA system tests were conducted making
small step commands in pitch and roll in level flight at sev-
eral flight conditions.

Combinations of pitch and roll commands were tested,
followed by PCA approaches to gradually lower altitudes
until PCA landings were made. Manual throttles-only con-
trol techniques, including approaches, were also used for
comparison: All approaches were made to the Edwards
main runway 22. This runway is 15,000 ft long and 300 ft
wide, with an elevation of 2,274 ft above mean sea level

(MSL).

Another test was devised to determine the ability of the

PCA system to recover the F-15 airplane from other than
trimmed level flight. Simulator tests showed that PCA
could be engaged at an upset condition, such as a 90 ° bank
and a 20 ° dive, starting from a speed of 260 kts. The pro-
cedure was as follows:

1. Trim straight and level at 260 kts and from 10,000 to
12,000 ft with CAS-off.

2. Fly the airplane to about 10° nose up.

3. Roll to 90° bank.

4. Release the controls.

5. Select "inlets emergency" to simulate the loss of
hydraulics to the inlet ramps.

6. Engage PCA as the nose drops through -10 °.

The PCA pitch control laws included velocity feedback for
these high-speed cases.



Eight pilots flew the PCA system (table 1). All were test
pilots with varying degrees of experience. A series of
flight cards was developed to demonstrate the PCA system
capabilities and allow the pilots to evaluate its
performance.

• PCA approach to 200 ft above ground level (AGL),
disengage, CAS-off touch-and-go landing.

• PCA approach to 100 ft AGL, PCA go-around.

• PCA approach to 50 ft AGL, disengage, CAS-off
touch-and-go landing.

Table 1. Pilots for the propulsion-controlled aircraft flight
evaluation.

• PCA approach to 20 ft AGL, disengage, CAS-off
touch-and-go landing.

Pilot Affiliation Current Assignment

A NASA

B NASA

C USAF

D MDA

E NASA

F NASA

G USAF

H NAVY

Dryden Fo15 PCA Project Pilot,
Edwards, California

Dryden F-15 Project Pilot,
Edwards, California

Guest, Experimental Test Pilot,
445th Test Squadron, Edwards
AFB, California

Guest, Contractor Test Pilot, F- 15
Combined Test Force,
Edwards AFB, California

Guest, Dryden F-18 Project Pilot,
Edwards, California

Guest, Dryden Chief, Flight
Operations, Edwards, Califor-
nia

Guest, USAF Test Pilot School,
Edwards AFB, California

Guest, F-14 Test Pilot, Naval Air
Warfare Center, Patuxent River,

Maryland

PCA recovery from 260 kts at an altitude of 10,000 ft
simulated hydraulic failure and upset, descent,

approach to landing, disengage at 20 ft AGL,
CAS-off landing.

Manual throttles-only approach to 200 ft AGL,
CAS-off go-around.

Results and Discussion

This section presents results of the initial throttles-only
step response testing, the PCA step response testing, PCA
approach-and-landing tests, PCA recovery from upset
conditions, and manual throules-only approach attempts.

Throttles-only step responses were flown to define the
airplane response. Differential throttle inputs produced the
desired roll response at all tested conditions. Positive pitch
response was evident at 150 kts with the thrust increases
causing the desired nose-up response. At 170 kts and
higher speeds, an effect resulting from the forward place-
ment of the inlets resulted in an initial response which was
opposite to the desired response. 4 Because of this pitch
response, PCA approaches were flown at 150 kts.

Each guest pilot received a briefing on the PCA con-
cept, its implementation on the NASA F-15, and its pre-
dicte,d performance. The guest pilots then flew the flight
test cards in the NASA Dryden simulator. These pilots
were allowed to repeat this simulated flight as many times
as they desired. Then, a detailed cockpit briefing was
given, and the flight followed within 1 to 7 days.

The guest pilots all flew the same tasks which consisted
of

• CAS-off flight control and handling qualities evalua-
tion.

Up-and-away manual throttles-only control--small
pitch, then small heading changes, then combined
pitch and heading control.

• PCA-engaged step responses and small pitch and
roll inputs combined.

In addition, PCA step responses were flown. At 150
kts, the pitch response was slow but stable. A 2° step

change in flightpath took 10 sec. Roll response was faster.
A 20 ° bank angle step took about 5 sec. For small bank
angle inputs, an approximately 3-sec lag occurred.

Propulsion-Controlled Aircraft Approaches and
Landings

Propulsion-controlled aircraft approaches to landing and
a PCA go-around were flown, followed by PCA landings.
Figure 4(a) shows a time history of the last 56 sec of the
first PCA landing. The conditions for this landing included

an 8-kt wind down the runway and almost no turbulence.
The pilot reduced the ftightpath command from -1.6 ° to
-1 ° at an altitude of 200 ft and to -0.4 ° at 80 ft. A very
shallow final approach resulted from these reductions.
Pitch commands were few, and almost full time was spent
making bank angle commands to maintain runway align-
ment. At an altitude of 20 ft, 6 sec before touchdown, the

ground effect began to affect the flightpath, primarily with
a nose-down pitching moment. The PCA system increased
throttle setting and speed to try to counter the ground



effect, but with no flight control input, the aircraft pitched

down to -1.8 ° flightpath at touchdown. At this point, the

pilot made an aft stick input to cushion the impact on the

nosegear. Bank angle control and lineup were good

throughout the final approach. A small correction to the

right was made just before touchdown.

Figure 4(b) shows the HUD video view at touchdown.
Bank angle at touchdown was -1% Touchdown was

approximately 8 ft to the left of the runway centerline.

The velocity vector was lower than the command because

of the ground effect. The pilot rated the pitch control as

very good except for the ground effect. Roll control was

rated as adequate for this first landing.

Following this landing, another approach was made. In

this case (fig. 5), the control tower requested a 360 ° turn

for spacing 6 miles from the runway at 90 sec. The pilot
made this turn under PCA control, selecting an immediate

32 ° bank. The nose dropped to --4 ° but was recovering

when the pilot commanded a slight climb. At 200 sec, the

pilot rolled out and then continued the approach. On final

approach, a steeper flightpath of-2.5 °, then -1 ° was flown
until 20 ft when the command was raised to 0.

In spite of this different technique, the ground effect
was similar and touchdown was again at 8 ft/sec. It

appeared that all landing sink rates would be at least in the
8 ft/sec range. Because the landing gear was only capable

of sink rates of 10 ft/sec, there was not a large margin for
error or variation. Because of their limited experience with

the PCA system and the CAS-off F-15 airplane as well as

the high sink rate because of ground effect, no actual PCA

landings were made by the guest pilots.

Simulated Loss of Control, Upset, and

Propulsion-Controlled Airplane Recovery

Project and guest pilots flew the simulated hydraulic

failure induced upset, followed by a PCA system engage-

ment and recovery. Figure 6 shows a time history of pilot

F flying this maneuver. The PCA was engaged at an 85 °

bank and -18 ° flightpath. The PCA system commanded
full differential thrust, rolled the wings level, then reduced

thrust to begin the phugoid damping. The pilot put in a
bank command to convert some of the excess pitch energy

into a turn to reduce the pitchup. Airspeed decayed to

150 kts over the top. After one full pitch cycle, pilot F

lowered the flaps, which caused another pitchup and speed

reduction, with speed falling to a minimum of 105 kts.

The landing gear was extended, and the pitch oscillation

was damped quickly. Trim speed was 150 kts. Pilot F then

turned back toward the Edwards runway 22 and began a

descent with a -6 ° flightpath command. At 450 sec, the

pilot leveled the airplane and made a turn to start a long

straight-in approach to runway 22. The approach was con-
tinued with minimal deviation until 10 ft above the

runway and on centerline in perfect position to land, 11

rain after the upset.

Figure 6('0) shows the ground track and HUD video for

this test, including tl?e last video frame with the radar
altimeter reading 10 ft. The flightpath velocity vector just
below the command box is also shown. At that point, pilot

F used the stick to decouple PCA and flared slightly for
touchdown.

Figure 7 shows another upset and PCA recovery. In this

case, flown by pilot H, PCA was engaged at 68 ° bank and
-10 ° flightpath, a somewhat less severe upset. The PCA

commanded a large, but not full, differential thrust. This

thrust rolled the wings to nearly level, and the pitch oscil-

lation was damped rapidly. Flaps and landing gear were
lowered during a down part of the phugoid, which aided in

rapid stabilization of flightpath. In data not shown, pilot

H then turned and began a descent similar to that shown in

figure 6. In this latter case, the wind was 280 ° at 16 kts

with gusts to 26 kts, and light to occasionally moderate

turbulence. Yet with aggressive bank angle commands,

pilot H was still able to fly under PCA control to 20 ft
above the runway and within 10 ft of the centerline.

The F-15 airplane flown with CAS-off has sufficiently

poor stability and flying qualifies to make it a very chal-

lenging application for PCA. The success of the F-15 PCA

system in stabilizing a difficult airplane indicates that

more stable airplanes, such as large transports, should
have better or at least equal success with PCA systems.

Manual Throttles-Only Approaches

For comparison to the PCA approaches, all pilots flew a

manual throttles-only approach. After many attempts at

manual approaches, the PCA pilot rated the chances of a

safe landing at zero. The guest pilots flew these manual

approaches with a minimum of practice, as would be the

case in a real emergency.

Figure 8 shows pilot F's manual approach, overlaid over

the PCA approach that this pilot had flown 15 min earlier

after the upset and recovery. Winds and turbulence were

very light. Pilot F had a very difficult time damping the

phugoid in the manual mode. Flightpath angle excursions

of at least +_3° and speed variations of as much as +20 kts

from trim speed occurred. The throttles were on the idle

stop (i8 °) much of the time. Bank angle variations were

greater than on the PCA approach, and the pilot was never

able to get lined up on the runway. The approach was 200

to 1000 ft fight of centerline. Heading varied +-3°.

Although the average flightpath was the same as for the

eadier PCA approach, the extreme variations in flightpath

and the difficulty in lineup and heading control would
make a safe runway landing extremely unlikely. It might

be possible to hit the runway, but not at a safe sink rate.



Pilot Comments

In general, pilot comments were very consistent and

favorable. A few of the comments of the PCA test pilots

and their recommendations for added features are pre-

sented here. The project pilot's overall PCA comments are
summarized in reference 6.

Pilot H evaluated the PCA system flown in the HIDEC

F-15 airplane as highly effective as a backup recovery sys-
tem should an aircraft lose total conventional flight con-

trois. The system was simple and intuitive to use and

would require only minimal training for pilots to learn to

use it effectively. Of course, landing using PCA would

require higher workloads than normal, but this pilot
believes such landings could be done safely. The fact that

the system provides a simple, straight forward, go-around
capability, which allows multiple approaches, further sup-

ports the safe-landing ability of the system. Dutch roll

suppression characteristics of the system were extremely

impressive to this pilot and would allow landings to be

done even in nonideal wind conditions. The PCA system

exhibited great promise and if incorporated into future

transport aircraft could further improve the safety of the

passenger airlines.

Pitch control was outstanding, which allowed the pilot
to work almost exclusively in the roll axis. Pilot workload

in roll was high; however, it could have been significandy

reduced if a heading hold feature were incorporated.

Pilot G noted that the PCA flies the airplane really well.

The thumbwheel concept is good, and the gains are just

right. On the first approach, the airplane was real stable.

This pilot was surprised at how well the PCA held glide

slope. The roll response was really good. On the PCA

go-around, this pilot was at a -3 ° glideslope at i00 ft but

put in a big nose-up command. Pilot G said, "i was confi-

dent of the go-around, which bottomed out 60 ft above the

ground." On the next approach to 50 ft, "I think you could

get the airplane on the ground from this approach, in spite

of the crosswind," pilot G continued.

Pilot C made several general (PCA) handling qualities

comments. The aircraft responded adcquatcly to all inputs

commanded by this pilot. Pitch and roll responses were

very sluggish, yet always consistent, and therefore pre-

dictable. The phugoid was surpressed by the system and
was not noticeable except when making large changes in

pitch. Dutch roll was very well controlled by the system.
Generally, the system provided excellent flightpath stabil-

ity and good control of the aircraft without being overly

sensitive to gusts.

Control Augmentation System Evaluation

Pilots A through H commented negatively on the slug-

gish control, light damping, marginal stability, and high

stick forces with the CAS-off. This situation provided a

challenging environment for PCA control.

Unusual Attitude Recovery

Pilot C flew the aircraft clean, with CAS-off at 250 kts,

10,000 fi MSL to a 10° flightpath angle and then banked to

approximately 75 °. Once this attitude was achieved, the

flight controls were released, inlets were selected to emer-

gency, and PCA was engaged. The PCA system alone was

used to recover the aircraft. Initially, a level flight attitude
was selected at the thumbwheels. The aircraft pitched up

and basically entered the phugoid mode, slowing down in

the climb. Right bank was selected with the thumbwheels

to aid the nose drop and minimize the airspeed bleed off.

While on the down side of the phugoid motion, the gear

and flaps were extended. This extension occurred on the

descending portion of the phugoid to minimize the effects

of the increased pitching moment because of flap exten-
sion. Unusual attitude recovery was easy and effective

using the PCA controls. At no time was the pilot con-

cemed about the aircraft position because of PCA

performance.

Controls and Displays

Pilots A through H found the thumbwheel controllers

effective, properly scaled, and easy to use. They also liked

the box on the HUD that indicated the flightpath
command.

Manual Throttles-Only

No pilot was successful in the manual throttles-only

approach. Pilot C observed that this mode of flight was

extremely difficult if not impossible without a large

amount of training. The major problem was controlling the

phugoid in pitch, and the anticipation required to do that

was monumental. Using differential thrust to control roll

was marginal at best. Pilot C discovered that it was fairly

easy to use the wrong throttle when trying to control bank.
The manual throttle-only flight condition was unsatisfac-

tory and would not be recommended by this pilot in any

ejection-seat-equipped aircraft.

Recommended Improvements

Improvements recommended by the pilots are provided
next.

Heading mode

Pilot H commented on the desirability of a heading

mode to be engaged on final approach to reduce the need

to make constant bank angle inputs to hold heading. The

PCA logic did incorporate a heading hold and a heading

command feature. However, this logic had not been thor-

oughly tested, lacked a simple means of implementation,

and was not flown by the guest pilots.



Altitude mode

Pilot D commented on the desirability of a control mode

to capture and hold a commanded altitude.

Concluding Remarks

An evaluation of a propulsion-controlled aircraft (PCA)

system on an F-15 airplane has been flown. For compari-

son, manual throttles-only approaches were also flown.

The following conclusions have been made:

. The PCA system provides an effective method for

flying an airplane without any flight controls. Safe

landings have been made. Pilots felt confident

enough to make landings on their first PCA flight.

. The PCA pitch control was sluggish but very stable

and predictable. Roll control was positive but lagged

small inputs by about 3 sec. The pilots liked using
the bank and flightpath angle thumbwheels.

. The PCA engagements in upset conditions up to 90 °

bank and 20 ° dive were successful. These engage-

ments showed that PCA has a good chance for

recovering airplanes from flight control system fail-

ures, provided that the controls fall in a near-trim
situation.

. Manual throttles-only control is marginally possible

for up-and-away flying. On the other hand, this con-

trol is not capable of making a safe landing for an
airplane with such low natural stability as the F-15

airplane.

. The F-15 airplane flown with the control augmenta-

tion system off has sufficiently poor stability and fly-

ing qualities to make it a very challenging

application for PCA. Success of the F-15 PCA

system in stabilizing this airplane indicates that other

airplanes, such as large transports, which possess

high levels of stability should have increased success

with PCA systems.

° Pilots were able to use the PCA system effectively

on their first flight. They liked the stable pitch control

and could adapt to the roll control. All of the pilots
were able to complete approaches to the runway that

they felt could have been carried on to safe landings.
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(b) Three-view drawing.

Figure 1. NASA F-15 Highly Integrated Digital Electronic Control flight research aircraft.
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(b) Heads-up display video just before touchdown.

Figure 4. Concluded.
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Figure 5. Time history of the second propulsion-controlled aircraft approach and landing, with a 360 ° turn for spacing,

pilot A.
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Figure 6. Simulated loss of flight controls upset, propulsion-controlled aircraft engagement, recovery, descent, and
approach to landing, pilot E
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